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IMPROVE CESU funding for FT-IR

1985 - 2025

* Fourier Transform — Infrared spectroscopy
* Uses infrared light to probe chemical bonds in particles

* Non-destructive to samples so that gravimetric mass, XRF, HIPS and FTIR can
analyze the same filters

* Cooperative agreement (CESU) funding supports the FTIR analysis of
Teflon filters collected at a subset of IMPROVE sites

e 20+ sites used to calibrate FTIR spectra to TOR OC and TOR EC
* Used to measure OC and EC at international sites operated by SPARTAN and NASA/MAIA
* Smaller research projects — impact of smoke on the growth of plants

* Sites collocated with the new ASCENT network
 Sites to support DOE-funded organic hygroscopicity research

UCDAVIS

Air Quality Research Center
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Increased Mortality in US due to
Wildfire Smoke — NY Times

Chemical Speciation

Network
Average Yearly Smoke, Recent and Future
A new study indicates that wildfires, intensified by global warming, will
generate an increasing amount of smoke that is harmful to humans.
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regions of the United States, resulting in
discontinuities at some state borders. THE NEW YORK TIMES

* IMPROVE and CSN data with GEOS-CHEM and satellite AOD used to estimate monthly PM2.5 (van Donkelaar
et al., 2021), PM2.5 smoke estimated by machine learning model (Childs et al., 2022)

* Increased wildfire smoke due to global warming will kill 70,000 Americans/year by 2050
* Network data allows us to identify impact of climate change and the resulting impact on human health

UCDAVIS Quit et al., Nature, 2025, Accelerated Article Preview. Figure from The New York Times.

. . September 18 © 2025 The New York Times. All rights reserved. Used by permission and protected by the Copyright Laws of the United States. The printing, copying,
AI r Q u a I |ty Resea rCh Ce nter redistribution, or retransmission of this Content without express written permission is prohibited.



Los Angeles Urban Wildfires in cnemicatsoecinion | ZATRN

etwor ASCENT
January 2025 Network
—~ Hourly Pb, ASCENT LA site, Pico Rivera
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UCDAV'S Baliaka et al., Morbidity and Mortality Weekly Report of the CDC, Feb 20, 2025
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https://www.epa.gov/outdoor-air-quality-data
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AAAR presentation using IMPROVE data

(®
Ve
INFLUENCE OF WILDFIRE SMOKE ® ®
ON THE REGIONAL AIR QUALITY ow * %
IN THE U.S. MIDWEST ~ e | B

Parth Thakre, Kerstin Cox, Samantha Galicki, and
GOURI PRABHAKAR
AAAR 2025

@ PURDUE Department of Earth, Atmospheric,
ind Planetary Sciences

UNIVERSITY. | ®

s M7/2029

From Purdue Professor that gave this talk: | have used this data
to guide undergraduate research and to teach data-sharing
principles in our introductory Atmospheric Sciences course.

DATA

" IMPROVE Network - Longest ground
observations of speciated aerosol in
the U.S.

* Fight states —IN, IL, |A, MI, WI, MN,
OH, MS

* Only sites with at least 10 years of
data included = 14 sites



Topics for this talk

* Estimating hygroscopicity of organics in wildfire samples at Yosemite,
Sequoia and PMRF IMPROVE sites

* Measuring organic functional groups in high time resolution with an
ACSM instrument — method developed using FTIR spectra and ACSM
data at IMPROVE Atlanta, Ga site

e Using 20+ sites to calibrate FTIR spectra to TOR OC and TOR EC

* Used to measure OC and EC at international sites operated by SPARTAN and NASA/MAIA
* Smaller research projects — impact of smoke on the growth of plants

UCDAVIS

Air Quality Research Center



Hygroscopicity of Organic Aerosol from Wildfire

Emissions

Nagendra Raparthi, Anthony S. Wexler, Ann M. Dillner

Air Quality Research Center
UC Davis

Submitted to Nature Communications on November 12, 2025
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Why Study Wildfire Emissions & Hygroscopicity

» Chemical composition — different from other aerosol sources
» Heavily dominated by organics
» Varies by fuel properties, combustion conditions
(flaming vs smoldering), fire size and intensity
» Meteorology and Topography

Pika Fire in Yosemite National Park on July

» Hygroscopicity depends on chemical composition 15,2023
» Organic hygroscopicity not well understood

=

(7

» Hygroscopicity impacts
» Particle size
» Aqueous phase chemical reactions
» Cloud condensation nuclei (CCN)
» Influence Earth’s radiation balance Garnet Firo in Sierra National Forest on Sep
» Particle lifetime 10202

Canadian wildfire in the year 2023.

11



Research Gaps & Objectives

Research Gaps

» Limited knowledge of the hygroscopicity of organic matter (OM)
» Developed a method to measure water uptake on Teflon filters (Raparthi et al., AMT,
2025)
» First used on laboratory-generated organic chemical filter samples (Raparthi et al.,
ES&T Air, in press)

» Dependence of wildfire PM, s hygroscopicity on chemical composition remains largely
unexplored.

Objectives of this Study
» Measure hygroscopicity of PM, . from local and long-range transported wildfires
» Derive organic matter hygroscopicity in local and long-range wildfire
» Model hygroscopicity from chemical composition of wildfire samples



Study Area: Identifying Local and Long-range Transported Smoke

Local smoke - Yosemite

> Three IMPROVE sites
» YOSE: Yosemite National Park
» PMREF: rural Vermont
» SEQU: Sequoia National Park

» Wildfire day selection (in 2023):
» Satellite-based active fire detection (NASA FIRMS)
» 72-hr backward air mass trajectories (NOAA HYSPLIT)

» PM, ; concentration — IMPROVE network

Long-range transported smoke - Jermont
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Methodology: Chemical Composition and Hygroscopicity

Chemical composition IMPROVE)

l

Teflon .

v

Quartz Nylon
v

TOR - Ion
Elemental | | Chromatography
Carbon & - Inorganic ions:

Organic Sulfate

Carbon Nitrate

Chloride

PM, . mass

FT-IR —
Organic Matter (OM):
aliphatic CH
aromatic CH
alcohol OH
non-acid carbonyl
carboxylic acid

XRF -
Elements

Water uptake at
84%, 90%, 97% RH

(Raparthi et al.,
2025)




Results: Organic Matter (OM) Composition from FT-IR

maCH OaroCH o COOH EnaCoO BaCOH
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Local smoke — Yosemite and Sequoia
> Yosemite:
» ~50% of OM is oxygenated
Long-range smoke to Vermont -
» Eastern and Western Canada
smoke:
» ~60% of OM is oxygenated
» Western Canada smoke:
» High COOH

OM composition

Local smoke Long-range smoke Local smoke

Oxygenated functional groups = sum(COOH, naCO, aCOH)

Non-oxygenated functional groups = sum(aCH, aroCH) 15



Results: PM, . Chemical Composition

' |
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» Unaccounted fraction —
> Yosemite: 20%
> Vermont: 19%

PM, 5 composition
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Local smoke Long-range smoke Local smoke » Also due to missing C-0-C
bonds for all samples
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Results: Hygroscopicity of PM, . - Kpyp 5
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» Sequoia —
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> Kpypo s Increased over
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» Long-range transport
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Deriving Hygroscopicity of Organic Matter (Kgy,)

Z.danovskii-Stokes-Robinson (ZSR) mixing rule:

—kpseps—ksscss— Ksoil — kgc

kOM,q -

Known

ksoit =
kEC — O
kAS & kAS from E-AIM model

Simplified mixing rule:

—kasceas—kss

kOM,q -




Results: Organic Matter Hygroscopicity (Kqgy) using Quantified PM
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Modeling kpy, s as a function of organic and inorganic composition

» Stepwise Multiple Linear Regression to obtain statistically significant predictors
> Kpvps 97.5% RH
» PM, . species mass fractions — Ammonium sulfate, oxygenated (COH + CO+
COOH) and non-oxygenated (aliphatic and aromatic CH)

AS Oxygenated OM Non—oxygenated OM
Kpyzs = 0.29 x + 0.1 « =2 —0.33 * Y9 +0.09
) PM2.5 PM2.5 PM2.5

(c) 0.10 T ;

-=--Linear (Regression fit) ® | e
~ 0.08 2277 e
2~ "
\n o
£ 0.06 A
= A
B 0.04 £ y=10.9147x+0.0047
s g R?=0.9147
E 0.02 p=0.000126
-

0.00
0.00 0.02 0.04 0.06 0.08 0.10

Measured k (97.5%) 20



Conclusions

» First study quantifying wildfire PM, . & OM hygroscopicity (Teflon filters).

» Hygroscopicity varies — depending on chemical composition which is dependent on fuel,
aging, particle size (not considered here)

» OM hygroscopicity varies - depending on functional groups (oxygenated or non-
oxygenated)

» Modeled hygroscopicity of smoke dominated samples in IMPROVE network

21
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Enhancmg Organic Characterization from ACSM

Mass Spectra Usmg Collocated Functional Groups
Measurements at IMPROVE/ASCENT Site m Atlanta
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Measurement Network (ASCENT)

High-Time, Real-Time, All-the-Time
Infrastructure Funded Oct. 2021, Sampling
May 2024, Operations Funded Sept. 2025

Model and
Instrument Measurements
Manufacturer
Aerosol Chemical i
. ToF-ACSM, Organics, sulfate,
Speciation Aerodyne nitrate, ammonium
Monitor (ACSM), y L ’
Research chloride Network
PM, 5
@ ASCENT
625i, Cooper
Xact, PM, ¢ . P Trace metals
: Environmental

Aethalometer, AE33, Magee black and brown carbon

PM, . Scientific
S.cfamnlng. 3938W89, Partlc.le r.1um.ber size
Mobility Particle distribution,
: TSI .
Sizer, PM, number concentration

UCDAVIS

https://ascent.research.gatech.edu/, data publicly available in spring 2026

Air Quality Research Center



Motivation

 Acrosolmass spectrometer/Aerosol chemical speciation monitor (AMS/ACSM)
fragment 1ons lack chemical specificity

* Fourier Transform Infrared Spectroscopy (FTIR) analysis provides chemical
specificity through functional groups
* Challenges in measuring functional groups from ACSMinclude:
« ACSMresponds differently to same functionality
 FTIRspectral interferences
 Time resolution differences between the ACSMand FIIR measurements

Goals

* Enhance chemicalresolution of ACSMspectra using parallel FTIR functional
groups

* Develop parameterizations to predict functional groups from ACSMspectra



Functional group measurements

* 24-hour filters are collected every
third day by IMPROVE in Atlanta

141 . Carboxylic Acid [OH‘;__“__I 1
i Atla lyze d by FTIR Alcunull (OH) __— Ammonium (NH') PTFE (CF,)
. . = L Al hatic{CH)d Nileala (NO.)
* Non-destructive FTIR analysis ) o |
takes 5 minutes per sample S01] AL I}
* Measure five functional groups \ C?é?%”f"\\ il
¢ Cal'b Ony1 (CO) il Scattering ':—f___ \ |
* Carboxylic acid (COOH) A it | | |
[ J Nonacid Carb Onyl (na CO) 4000 3800 3600 3400 3200 3000 2800 2600 2400 220{)1 2000 1800 1600 1400 1200 1000 800
Wavenumber (cm”
e Alcohol (aOH) enumper(em Fresno, CA

* Alkane (aCH)



ACSM organic fragment 1ons

* Hourlyorganic fragment data from
ACSM at Atlanta site
* Number ofions at each
mass/charge (m/z)
* Average to 24-hours to match FIIR
spectra

Mass Spectra

0 50 100 150 200 250 300
Mz

m/z Ion Identity |Related functional groups
29 CHO*/ C:Hs* | Alcohol, alkane
43 C.HsO0"/ CsH;" | Carbonyl, alkane
44 CO.;" Carboxylic acid
C+H-"* or
55 C.ILO* Alkane
57 CaHo" Alkane
60 C2H.0.* Alcohol
69 CsHo" Alkane
71 CsHii* Alkane
73 CsHsO:*or | Carbonyl, alcohol,
C4HoO" carboxylic acid



https://cires1.colorado.edu/jimenez-group/AMSsd/L_SOA_Q_001_a_pinene.jpg

FTIR OMand ACSM OA comparisons
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e Atlanta ASCENTsite:
* FTIROM=0.78*ACSM OA+2.26, R*=0.73
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* Primaryand aged chamber aerosols (Yazdaniet al,2022)

* FTIR OM=1.3*AMS OA+9.7, R?=0.92

* Gives confidence for further model development




Carboxylic acid (COOH)

E
_ . 2 . .| + COOH well
S50 y=o0.8ax + 032 _~ I | v=060x+081 | predicted using FTIR
- 2 = ~ 2 — ) R
S | K08 ; =080 to calibrate mzs
% ' "/ ’ o4 Pie . .
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x . &} B . -
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® e = o’ € > °
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° ‘.?... § ° /””": 0
8| A" 5|7
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0 _' L 1 1 8 0 - | ] ]
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FTIR carboxylic acid (ug/m?) FTIR carboxylic acid (ug/m?)
FGmodel type Predictors Calibration equation

Carboxylic acid EN

mz29, mz43, mz44, mz55, mz57,
mz60, mz69, mz71, mz73

y=-2.53*mz29 + 1.28*mz43 +2*mz44 +0.87*mz55 -17.95*mz57 + 87.28*mz60

-12.44*mz69 + 62.27*mz71 -188.91*mz73 +0.8093

Carboxylic acid linear

y=1.06*mz44 +1.01




Predicted alcoholOH (ug/m?3)

Alcohol (aO

(*)

* aOH well predicted

E
y =0.82x + 0.49 e g y =0.65x + 0.54 us mg FTIR to
R?=0.66 ° S0 e N R?=0.65 lb t
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FGmodel type Predictors Calibration equation
AlcoholOH EN mz29, mz60, mz73 y=1.86*mz29 +2.54*mz60 +33.93*mz73 +0.2
AlcoholOH linear mz29 y=4.19*mz29 +0.18




- N w I~

Predicted nonacid carbonyl (ug/m?)

()

Non-acid carbonyl (naCO)

2y
o
= * naCO not very well
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Predicted alkaneCH (ug/m?)
N B

y =0.82x + 0.56
Rz =0.64
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FTIR alkaneCH (ug/m?)

Predicted alkaneCH from m/z57 (ug/m?)

(*))

N

N

(=)

aCH

y=0.41x+1.74 ®
Rz =0.41
o
o« o - e
¢ ‘o - ':
e - -
([ ] o [
D M
- [ ]
0 2 4 6

FTIR alkaneCH (ug/m?)

 aCH well predicted
using FTIR to
calibrate mzs

* Multiple mzs give
much better
prediction than only
one

FGmodel type Predictors Calibration equation
AlkaneCH EN mz29, mz43, mz44, mz57, mz60, y=-2.92*mz29 +3.3*mz43 +1.43*mz44 +2.51*mz57 +58.42*mz60 + -
116.99*mz73 +1.22
AlkaneCH linear y=6.52*mz57 +1.96




Seasonal variations in Atlanta
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Predicted COOH is high in summer and low in winter, whereas aOH is not show seasonal pattern



Summary of functional group predictions from
ACSMusmg FTIR data from IMPROVE

* Functional groups can be predicted by ACSM fragment 1ons in
Atlanta

* COOH, CO, aOH, and aCH are well predicted
* naCO 1s not well predicted due to low concentration

* Predicted COOH shows seasonal variation
* Next Steps

* Diurnal variability of functional groups
* Apply/tryat other IMPROVE/ASCENT sites



International Speciated PMZ2.5 Monitoring

i *SPARTAI

Global Particulate Matter Network




Surface PARTiculate mAtter
Network (1 of 2) SSPARTA

Global Particulate Matter Network
* Began 2012

* Low- and Middle-Income Countries
e ~29 sites
e Dense urban areas
* High pollution
* Little to no monitoring data

Halifax Rehovot Haifa Delhi

Kanpur aka
[ ( @ !
I @ @ II I ‘
- a3 : ,,h!."-' 'c_» = —t "}"i,
AL e

i I"

i Lah
K

Downsview Sherbrooke

fl\\,o Active
* Objectives: Evaluate and enhance 7]/ @ Reies
satellite estimates of PM2.5 and

resulting health impacts

s

Sodium
Chloride
Potassium
Nitrate
Ammonium
Sulfate

 Optical: Nephelometers and niin
Collocated AERONET B
Sunphotometers

As of June, 2025

UCDAVIS Data publicly available https://www.spartan-network.org/

Air Quality Research Center



Surface PARTiculate mAtter #SPARTA
NetWOrk (2 Of 2) Global Particulate Matter Network

 Teflon filter samples:

e 24 hour PM2.5 samples 008 e Band:g ,'ndon,e,si,a,czc,) — llorin, Nigeria
* Collected1in3days(9amto9 ™ MEAL

am) or 9 days (on and off) n
* Species

* Gravimetric mass (Wash U) T

* Organic and elemental carbon (UC Wavenumber(om) Wavenumber(or)
Davis)
 Soil and trace elements (Wash U) Hanoi, Vietnam Halifax, Canada
0.02 |- b
* Anions and cations (Wash U) ocel

* OC and EC measured using FTIR _...

* Calibrations developed from FTIR ..
spectra of IMPROVE Teflon filters
and IMPROVE TOR OC and EC at r R R i
AQRC’ UC DaViS Wavenumber(cm-1) 000000OOOVO\/aOV:]uOmZeOr(:ma)OOOOOOOOO00

aliphatic (amines)

|||||||||||||||||||||

UCDAVIS Data publicly available https://www.spartan-network.org/

Air Quality Research Center
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FT-IR EC Concentrations for SPARTAN data
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Mission to Earth: Multi-Angle Imager
for Aerosols (MAIA) Satellite

 Satellite to measure aerosol
composition in a set of globally-
distributed target areas

| Expected to launch no earlier
than 2026, surface monitoring
operational now

* Objective: Understand the

health impacts of aerosol
S BEP 4 - species in globally-distributed
[ primary Targetarea [ target areas

D Secondary Target Area

o Speciated P2 __ : | * Data: international sources

£SPARTAN o) USEPA A\

Chemical Speciation
COLORADO STATE P AETHLABS
Global Particulate Matter Network UNIVERSITY

UCDAVIS https://maia.jpl.nasa.gov/mmgis/

-
uuuuuu

Air Quality Research Center NASA Earthdata
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PM2.5 composition and organic matter sources
in Pretoria, South Africa

Anwar M. N., Takahama S., C.R. Oxford, Martin R. V,, Li Y., Igel A.
L., Hasheminassab, S., Raffuse S.M., Naidoo M. , Garland R. M.,
Dillner A. M.

Submitted May, 2, 2025 Aerosol and Air Quality Research. (Under Review)
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PM2.5 Conc. (ug/m®)

Pretoria, South Africa
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OM Source Apportionment employing PMF with
FT-IR Spectra

|

Arb. Units
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Separation of Sources in the BB/biogenic SOA
and FFC

Days with highest fraction of BB/Biogenic SOA

MODIS fire product imageries

dCorrelation with the chemical

speciation
K, naCO for biomass burning
(dHeavy metals for industrial

 Timeline of occurrence
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OM Sources by Season in Pretoria, South Africa

Source
Fossil Fuel Combustion
Biogenic SOA
Burning and Industrial
Pure Biomass Burning
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Pretoria Summary

O Low cost, routine, and non-destructive FT-IR analysis used for OM
qguantification and source apportionment in Pretoria, South Africa SPARTAN
samples

o

PM2.5 averaged 17 ug/m?3, half of days exceeded WHO guidelines

o

OM dominated the PM2.5 mass conc. (~50%) followed by ammonium sulfate

1 Two broad categories of the sources were identified: biomass burning &
biogenic SOA (BB&SOA) and fossil fuel combustion factors

 The BB&SOA factor had three distinct sources:
1 pure biomass burning,
1 biogenic SOA,
1 mixed biomass/industrial/vehicular emissions source

 SOA highest in summer, pure biomass highest in spring
45 . UCDAVIS
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PM, ;. aerosol concentration, composition, and
organic sources in Addis Ababa, Ethiopia

Anwar M. N., Takahama S., Oxford C.R., Hasheminassab, S., Mamo
T., Asfaw A., Dillner A. M.

Submitted to Environment International
November 12, 2025
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Addis Ababa, Ethiopia
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Meteorology and Seasons in Addis Ababa
Jan — Feb March — April May — Sep Oct - Dec
0 mm rain/day 6.5 mm rain/day 8.3 mm rain/day 0.1 mm rain/day

BLH 2000m BLH 2000m BLH 2000m — 1000m BLH 1500m — 2000m
First Dry Less Rainy More Rainy Second Dry

N

N
20% 100%
80%
60%
10%
X 40%

" 5% i y 20%
ol :
i

15%

mean = 4.4945 mean = 3.1745 mean = 2.7957 mean = 4.4011
S calm = 0% S calm = 0% s P S calm = 0%
2to3 3to4 4tod5 5to6 2to3 3to4 4to5 5to6 2t03 3to4 4105 5t06 2to3 3to4 4to5 5t06

Wind Speed (m/s)

Wind Speed (m/s) Wind Speed (m/s) Wind Speed (m/s)
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Frequency of counts by wind direction (%) Frequency of counts by wind direction (%) Frequency of counts by wind direction (%)
UCDAVIS
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Addis Ababa PM2.5 concentrations
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OM Origin at Addis Ababa — no wildfire impact
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Seasonal variation of OM sources at
Addis Ababa
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Summary of Addis Ababa, Ethiopia project

O FT-IR spectra which are low cost, routine, and non-destructive to PTFE filter
samples used to measure OM and assess sources

O OM, dust, and EC contributed significantly (roughly 25% each) to PM2.5

1 Charcoal and wood burning for home heating and cooking
0 50-90% of OA in rainy
d 20-80% in dry season

O Fossil fuel combustion
O 35-80% of OA in dry season




IMPROVE FT-IR analysis extends composition data
and hygroscopicity research

* Hygroscopicity of organics in wildfire samples
* Yosemite, Sequoia and PMRF IMPROVE sites

* Develop model of OM hygroscopicity based on functional group and
ammonium sulfate concentrations

* Measuring organic functional groups in high time resolution with an
ACSM instrument

 method developed using FTIR spectra and ACSM data at IMPROVE Atlanta site
e COOH, OH and CH well measured, naCO not well measured

e Using 20+ sites to calibrate FTIR spectra to TOR OC and TOR EC

* Used to measure OC and EC at international sites operated by SPARTAN and NASA/MAIA

* SPARTAN spectra used to measure OM and estimate sources in Pretoria and Addis Ababa,
two major cities in Africa

UCDAVIS

Air Quality Research Center



How Does Unquantified PM, ; Affect the Hygroscopicity Organic Matter (Kgy,)

» Unquantified PM,  — could be hydrophobic or hydrophilic or mix of both

» Three scenarios to incorporate unquantified PM in calculation of kp,:
» S1: Unquantified PM, 5 is completely hydrophobic (i.e. k,;= 0)
» S2: Unquantified PM, . is completely of OM
» S3: Unquantified PM, . has similar water uptake to bulk PM, .
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Results: Role of unquantified PM on derived Ky,

0.12 » Hydrophobic assumption:
oo | ond=d N » Koy Will be 1.2 - 8.6
- <>kuq=(ll<PM2.5 higher than derived
| Al using quantified
0.06 T A fraction.
5004 Pl - g éé AL AA--% AAAA?
. . ] C o .
ta® A 19 $@ A0+ Led | @fé?éi* | » All-OM assumption:
0.02 (g1 A T O\ :
¢ 248 4l s e 1974 > 1oy will be 1.1 - 8.2
000 ¢ T .T 3 ? higher than derived
0.02 <% ; - using quantified
004 ? ! fraction.
-0.06 .
» Bulk-PM, . assumption:
%, 2o, R, e, 2, 0%, R G e 2 2.5 : :
R A T T T > Koy = derived using

Yosemite Vermont Sequoia quantlﬁed fraction.
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