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IMPROVE filters show winter nitrate concentrations have
consistently been higher over the past 10 years

* Nitrate formation/evaporation function of precursors,
meteorological conditions, existing particle composition that
determine particle liquid water content and pH
Therefore, 1t 1s important to 1dentify the factors leading to and main
sources of nitrate to understand how to control its emissions



MACA Measurements
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GRSM Measurements
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MACA and GRSM
Times Series of URG Denuders and Filters
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-Observe similar pattern as IMPROVE data, concentrations higher at MACA
-This true in both gas and aerosol-phase



Temperatrure (°C)

Temperature (°C)
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MACA and GRSM

Times Series of Temperature, RH, Wind Direction
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-RH ranging from ~40 to 100%
-Temperature pattern very similar at both sites
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MACA

Times Series of Temperature, RH, Wind Direction
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-Started cold with snow on ground, followed by increase in temperature

Date and Time (LT)

-Then had intense deep freeze and snow
-Following this temperature continued to increase, leading to hottest days observed
-Ended with week of on/off rain and different wind pattern
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MACA

Times Series of Temperature, RH, Wind Direction
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-Started cold with snow on ground, followed by increase in temperature

-Then had intense deep freeze and snow
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-Following this temperature continued to increase, leading to hottest days observed

-Ended with week of on/off rain and different wind pattern



PILS (pg/m®)

MACA
Times Series of PILS and PM, . Mass
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-Nitrate, sulfate, ammonium track with PM
-Nitrate generally dominates changes in PM, with some

exceptions



PILS (pg/m®)

MACA
Times Series of PILS and PM, . Mass
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-Nitrate, sulfate, ammonium track with PM
-Nitrate generally dominates changes in PM, with some
exceptions



MACA

Times Series PILS and Picarro Ammonia
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-Temperature appears to largely be driving pattern
-Ammonium and nitrate concentrations noticeably
dropped when ammonia started increasing
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MACA
Chemical Characteristics of Nitrate Episodes
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*During lower nitrate periods, elevated
NH; levels were observed

Average Inorganic PM, s=3.9 pg/m?



Residence Time Analysis
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* Period A : northwesterly flow
* Period B : south/southwesterly flow

* Clear shift in major transport pathway from Period A to Period B




Period A Nitrate Dominated Episode - Jan. 15-17
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Inorganic PM, s dominated by nitrate
*Consistent northwesterly/central US
air mass inflow
*Suggests transport of regional emissions
(e.g., agricultural NH;, combustion NO,)

Jan. 17




Period B Transition from Nitrate to Sulfate
Dominated Episode — Feb. 4-6

Sodium = Ammonium ® Potassium Ni?l.'.at_er—_90th threshold
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e Larger fraction of Inorganic PM, ; contributed to sulfate across episode
* Observe switch in flow to include a southeasterly component



MACA

Times Series of PILS and URG Filters
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-Good agreement between PILS and URG filters
-URG filters suggest little PM,, nitrate



MACA
URG Denuder VS. Plcarro Ammonla
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-Well correlated, but slope < 1
-Periodic sampling evaporated particle from inlet filter?



PM,, Sampler (pglma)

MACA

URG Denuder PM,, vs. PM, .
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-PM,, and PM, s URG Samplers well correlated

for gas-phase measurements



Thermodynamic Model — ISORROPIA-II

Input Output
-Gases: NH;, HNO;, HCI -Gas/particle partitioning state
-Aerosol lons: SO,%7, NO;™, ISORROPIA -Aerosol liquid water content
NH,*, Na*, etc. -Aerosol pH

-Total concentrations and the
distribution between gas and
aerosol phases

-Meteorological Conditions:
RH, Temperature

* ISORROPIA-II 1s a thermodynamic equilibrium model designed to
simulate the partitioning of atmospheric inorganic aerosols and their
precursor gases

* Model additionally provides valuable insights into drivers of aerosol
formation and can support air quality management strategies
» Adjust precursor concentrations to estimate how PM, < mass
and composition change
» Test different scenarios (e.g., reducing SO,, NO,, or NH;
emissions) and evaluate their effectiveness in reducing PM, .
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ISORROPIA-II Modeled vs. Measurements
URG Filters and Denuders
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-Good agreement for
nitrate, ammonium,
and ammonia

-Agreement not as
good for nitric acid,
possibly due to
challenges with
modeling low
concentrations
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ISORROPIA (ug/im’)
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ISORROPIA-II Modeled vs. Measurements
URG Filters and Denuders
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-Good agreement for
nitrate and ammonia

-Agreement not as
good for lower
concentration
ammonium and
nitric acid



MACA
ISORROPIA-II Modeled vs. Measurements
PILS and Picarro Ammonia
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-Good agreement between model and measurement
-But model systematically underestimates the measured

ammonium



MACA
ISORROPIA-II Modeled Sum of Anions vs. Cations
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-Ion balance analysis reveals a persistent cation deficit,
suggesting presence of missing cations or acids 1n model



Summary

* Wintertime nitrate consistently emerged as the dominant
component of PM, s at MACA and GRSM

* Nitrate-dominated episodes (Jan. 15—17) were linked to
northwesterly air masses, while a transition to sulfate dominance
(Feb. 4-6) reflected southeastern inflow

* ISORROPIA-II showed strong agreement with both URG and
PILS measurements, confirming reliable model-measurement

performance
» This validation enables scenario-based simulations to assess precursor
emission controls and their impacts on PM, s composition

* Initial findings suggest that local thermodynamics, precursor
availability, and regional transport jointly drive wintertime nitrate
variability
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